约 5979 个字 预计阅读时间 30 分钟 共被读过 次
Agent¶
GitHub 资源 ¶
- Awesome SDKs for AI Agents - AI 代理 SDK 的精选列表
- GitHub - kyrolabs/awesome-agents: 🤖 Awesome list of AI Agents
开源 AI 代理项目 ¶
common agent¶
- GitHub - camel-ai/camel: 🐫 CAMEL: Finding the Scaling Law of Agents. The first and the best multi-agent framework. https://www.camel-ai.org
- GitHub - myshell-ai/AIlice: AIlice is a fully autonomous, general-purpose AI agent.
- GitHub - microsoft/autogen: A programming framework for agentic AI 🤖 PyPi: autogen-agentchat Discord: https://aka.ms/autogen-discord Office Hour: https://aka.ms/autogen-officehour
- GitHub - jbexta/AgentPilot: A versatile workflow automation platform to create, organize, and execute AI workflows, from a single LLM to complex AI-driven workflows.
- GitHub - DataBassGit/AgentForge: Extensible AGI Framework
- GitHub - reworkd/AgentGPT: 🤖 Assemble, configure, and deploy autonomous AI Agents in your browser.
- GitHub - satellitecomponent/Neurite: Fractal Graph-of-Thought. Rhizomatic Mind-Mapping for Ai-Agents, Web-Links, Notes, and Code.
- GitHub - geekan/MetaGPT: 🌟 The Multi-Agent Framework: First AI Software Company, Towards Natural Language Programming
others¶
- GitHub - calcom/cal.com: Scheduling infrastructure for absolutely everyone.
- GitHub - HumanSignal/Adala: Adala: Autonomous DAta (Labeling) Agent framework
role play¶
code¶
- GitHub - sourcegraph/cody: Type less, code more: Cody is an AI code assistant that uses advanced search and codebase context to help you write and fix code.
- GitHub - ajhous44/cody: Cody the coding ai assistant
- GitHub - continuedev/continue: ⏩ Create, share, and use custom AI code assistants with our open-source IDE extensions and hub of models, rules, prompts, docs, and other building blocks
- GitHub - Aider-AI/aider: aider is AI pair programming in your terminal
不更新的 ¶
- GitHub - codefuse-ai/codefuse-chatbot: An intelligent assistant serving the entire software development lifecycle, powered by a Multi-Agent Framework, working with DevOps Toolkits, Code&Doc Repo RAG, etc.
- GitHub - ennucore/clippinator: AI programming assistant
- GitHub - ur-whitelab/chemcrow-public: Chemcrow
- GitHub - Technion-Kishony-lab/data-to-paper: data-to-paper: Backward-traceable AI-driven scientific research
- GitHub - stitionai/devika: Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI. [⚠️ DEVIKA DOES NOT HAVE AN OFFICIAL WEBSITE ⚠️]
- GitHub - jina-ai/dev-gpt: Your Virtual Development Team
- GitHub - melih-unsal/DemoGPT: 🤖 Everything you need to create an LLM Agent—tools, prompts, frameworks, and models—all in one place.
- GitHub - Farama-Foundation/chatarena: ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments for LLMs. The goal is to develop communication and collaboration capabilities of AIs.
- GitHub - OpenBMB/ChatDev: Create Customized Software using Natural Language Idea (through LLM-powered Multi-Agent Collaboration)
- GitHub - seahyinghang8/blinky: An open-source debugging agent in VSCode
- GitHub - BloopAI/bloop: bloop is a fast code search engine written in Rust.
- GitHub - krohling/bondai
- GitHub - xeol-io/bumpgen: bumpgen is an AI agent that upgrades npm packages
- GitHub - yoheinakajima/babyagi
- GitHub - pgalko/BambooAI: A Python library powered by Language Models (LLMs) for conversational data discovery and analysis.
- GitHub - AutoPackAI/beebot: An Autonomous AI Agent that works
- GitHub - stepanogil/autonomous-hr-chatbot: An autonomous HR agent that can answer user queries using tools
- GitHub - irgolic/AutoPR: Run AI-powered workflows over your codebase
- GitHub - emrgnt-cmplxty/automata: Automata: A self-coding agent
- GitHub - aiwaves-cn/agents: An Open-source Framework for Data-centric, Self-evolving Autonomous Language Agents
- GitHub - eumemic/ai-legion: An LLM-powered autonomous agent platform
- GitHub - LehengTHU/Agent4Rec: [SIGIR 2024 perspective] The implementation of paper "On Generative Agents in Recommendation"
Paper 汇总 ¶
- Bergman, S., Ji, Z., Kermarrec, A.-M., Petrescu, D., Pires, R., Randl, M., & Vos, M. de. (2025). Leveraging Approximate Caching for Faster Retrieval-Augmented Generation. https://doi.org/10.1145/3721146.3721941
- Cai, Y., Guo, Z., Pei, Y., Bian, W., & Zheng, W. (2024). SimGRAG: Leveraging Similar Subgraphs for Knowledge Graphs Driven Retrieval-Augmented Generation (No. arXiv: 2412.15272). arXiv. https://doi.org/10.48550/arXiv.2412.15272
- Chen, B., Guo, Z., Yang, Z., Chen, Y., Chen, J., Liu, Z., Shi, C., & Yang, C. (2025). PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths (No. arXiv: 2502.14902). arXiv. https://doi.org/10.48550/arXiv.2502.14902
- Cheng, Y., Zhao, Y., Zhu, J., Liu, Y., Sun, X., & Li, X. (2025). Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving (No. arXiv: 2503.06567). arXiv. https://doi.org/10.48550/arXiv.2503.06567
- Geng, X., Wang, H., Wang, J., Liu, W., & Li, R. (2025). Enhancing RAG with Active Learning on Conversation Records: Reject Incapables and Answer Capables (No. arXiv: 2502.09073). arXiv. https://doi.org/10.48550/arXiv.2502.09073
- Guan, X., Zeng, J., Meng, F., Xin, C., Lu, Y., Lin, H., Han, X., Sun, L., & Zhou, J. (2025). DeepRAG: Thinking to Retrieval Step by Step for Large Language Models (No. arXiv: 2502.01142). arXiv. https://doi.org/10.48550/arXiv.2502.01142
- Gutiérrez, B. J., Shu, Y., Qi, W., Zhou, S., & Su, Y. (2025). From RAG to Memory: Non-Parametric Continual Learning for Large Language Models (No. arXiv: 2502.14802). arXiv. https://doi.org/10.48550/arXiv.2502.14802
- Han, H., Shomer, H., Wang, Y., Lei, Y., Guo, K., Hua, Z., Long, B., Liu, H., & Tang, J. (2025). RAG vs. GraphRAG: A Systematic Evaluation and Key Insights (No. arXiv: 2502.11371). arXiv. https://doi.org/10.48550/arXiv.2502.11371
- Han, H., Wang, Y., Shomer, H., Guo, K., Ding, J., Lei, Y., Halappanavar, M., Rossi, R. A., Mukherjee, S., Tang, X., He, Q., Hua, Z., Long, B., Zhao, T., Shah, N., Javari, A., Xia, Y., & Tang, J. (2025). Retrieval-Augmented Generation with Graphs (GraphRAG) (No. arXiv: 2501.00309). arXiv. https://doi.org/10.48550/arXiv.2501.00309
- Huang, H., Huang, Y., Yang, J., Pan, Z., Chen, Y., Ma, K., Chen, H., & Cheng, J. (2025). Retrieval-Augmented Generation with Hierarchical Knowledge (No. arXiv: 2503.10150). arXiv. https://doi.org/10.48550/arXiv.2503.10150
- Huang, S., Ma, Z., Du, J., Meng, C., Wang, W., Leng, J., Guo, M., & Lin, Z. (2025). Gumbel Reranking: Differentiable End-to-End Reranker Optimization (No. arXiv: 2502.11116). arXiv. https://doi.org/10.48550/arXiv.2502.11116
- Huang, Y., Zhang, S., & Xiao, X. (2025). KET-RAG: A Cost-Efficient Multi-Granular Indexing Framework for Graph-RAG (No. arXiv: 2502.09304). arXiv. https://doi.org/10.48550/arXiv.2502.09304
- Lee, M.-C., Zhu, Q., Mavromatis, C., Han, Z., Adeshina, S., Ioannidis, V. N., Rangwala, H., & Faloutsos, C. (2024). HybGRAG: Hybrid Retrieval-Augmented Generation on Textual and Relational Knowledge Bases (No. arXiv: 2412.16311). arXiv. https://doi.org/10.48550/arXiv.2412.16311
- Li, M., Gaussier, E., & Zhou, G. (2025). Enhanced Retrieval of Long Documents: Leveraging Fine-Grained Block Representations with Large Language Models (No. arXiv: 2501.17039). arXiv. https://doi.org/10.48550/arXiv.2501.17039
- Li, X., Cao, Y., Ma, Y., & Sun, A. (2024). Long Context vs. RAG for LLMs: An Evaluation and Revisits (No. arXiv: 2501.01880). arXiv. https://doi.org/10.48550/arXiv.2501.01880
- Lin, C.-Y., Kamahori, K., Liu, Y., Shi, X., Kashyap, M., Gu, Y., Shao, R., Ye, Z., Zhu, K., Wang, S., Krishnamurthy, A., Kadekodi, R., Ceze, L., & Kasikci, B. (2025). TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval (No. arXiv: 2502.20969). arXiv. https://doi.org/10.48550/arXiv.2502.20969
- Liu, H., Wang, Z., Chen, X., Li, Z., Xiong, F., Yu, Q., & Zhang, W. (2025). HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation (No. arXiv: 2502.12442). arXiv. https://doi.org/10.48550/arXiv.2502.12442
- Lumer, E., Basavaraju, P. H., Mason, M., Burke, J. A., & Subbiah, V. K. (2025). Graph RAG-Tool Fusion (No. arXiv: 2502.07223). arXiv. https://doi.org/10.48550/arXiv.2502.07223
- Luo, L., Zhao, Z., Haffari, G., Phung, D., Gong, C., & Pan, S. (2025). GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation (No. arXiv: 2502.01113). arXiv. https://doi.org/10.48550/arXiv.2502.01113
- Mahalingam, A., Gande, V. K., Chadha, A., Jain, V., & Chaudhary, D. (2024). SKETCH: Structured Knowledge Enhanced Text Comprehension for Holistic Retrieval (No. arXiv: 2412.15443). arXiv. https://doi.org/10.48550/arXiv.2412.15443
- Mukherjee, M., Kim, S., Chen, X., Luo, D., Yu, T., & Mai, T. (2025). From Documents to Dialogue: Building KG-RAG Enhanced AI Assistants (No. arXiv: 2502.15237). arXiv. https://doi.org/10.48550/arXiv.2502.15237
- Myers, A., Vargas, M., Aksoy, S. G., Joslyn, C., Wilson, B., & Grimes, T. (2025). Talking to GDELT Through Knowledge Graphs (No. arXiv: 2503.07584). arXiv. https://doi.org/10.48550/arXiv.2503.07584
- Ni, B., Liu, Z., Wang, L., Lei, Y., Zhao, Y., Cheng, X., Zeng, Q., Dong, L., Xia, Y., Kenthapadi, K., Rossi, R., Dernoncourt, F., Tanjim, M. M., Ahmed, N., Liu, X., Fan, W., Blasch, E., Wang, Y., Jiang, M., & Derr, T. (2025). Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey (No. arXiv: 2502.06872). arXiv. https://doi.org/10.48550/arXiv.2502.06872
- Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv: 2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136
- Wang, H., Feng, Y., Xie, X., & Zhou, S. K. (2025). Path Pooling: Train-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation (No. arXiv: 2503.05203). arXiv. https://doi.org/10.48550/arXiv.2503.05203
- Wang, S., Fang, Y., Zhou, Y., Liu, X., & Ma, Y. (2025). ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation (No. arXiv: 2502.09891). arXiv. https://doi.org/10.48550/arXiv.2502.09891
- Yin, C., Wei, E., Zhang, Z., & Zhan, Z. (2025). PaperHelper: Knowledge-Based LLM QA Paper Reading Assistant (No. arXiv: 2502.14271). arXiv. https://doi.org/10.48550/arXiv.2502.14271
- Yuan, X., Liu, Y., Di, S., Wu, S., Zheng, L., Meng, R., Chen, L., Zhou, X., & Yin, J. (2025). A Pilot Empirical Study on When and How to Use Knowledge Graphs as Retrieval Augmented Generation (No. arXiv: 2502.20854). arXiv. https://doi.org/10.48550/arXiv.2502.20854
- Zhang, J., Liu, Y., Wang, W., Liu, Q., Wu, S., Wang, L., & Chua, T.-S. (2025). Personalized Text Generation with Contrastive Activation Steering (No. arXiv: 2503.05213). arXiv. https://doi.org/10.48550/arXiv.2503.05213
- Zhang, Z., Feng, Y., & Zhang, M. (2025). LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers (No. arXiv: 2502.18139). arXiv. https://doi.org/10.48550/arXiv.2502.18139
- Zhao, J., Ji, Z., Fan, Z., Wang, H., Niu, S., Tang, B., Xiong, F., & Li, Z. (2025). MoC: Mixtures of Text Chunking Learners for Retrieval-Augmented Generation System (No. arXiv: 2503.09600). arXiv. https://doi.org/10.48550/arXiv.2503.09600
- Zheng, Z., Ni, X., & Hong, P. (2025). Multiple Abstraction Level Retrieve Augment Generation (No. arXiv: 2501.16952). arXiv. https://doi.org/10.48550/arXiv.2501.16952
- Zhou, J., & Chen, L. (2025). OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning (No. arXiv: 2503.08398). arXiv. https://doi.org/10.48550/arXiv.2503.08398
- Zhou, Y., Su, Y., Sun, Y., Wang, S., Wang, T., He, R., Zhang, Y., Liang, S., Liu, X., Ma, Y., & Fang, Y. (2025). In-depth Analysis of Graph-based RAG in a Unified Framework (No. arXiv: 2503.04338). arXiv. https://doi.org/10.48550/arXiv.2503.04338
- Zhu, X., Xie, Y., Liu, Y., Li, Y., & Hu, W. (2025). Knowledge Graph-Guided Retrieval Augmented Generation (No. arXiv: 2502.06864). arXiv. https://doi.org/10.48550/arXiv.2502.06864
- Alonso, N., Figliolia, T., Ndirango, A., & Millidge, B. (2024). Toward Conversational Agents with Context and Time Sensitive Long-term Memory (No. arXiv: 2406.00057). arXiv. https://doi.org/10.48550/arXiv.2406.00057
- Anokhin, P., Semenov, N., Sorokin, A., Evseev, D., Burtsev, M., & Burnaev, E. (2024). AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents (No. arXiv: 2407.04363). arXiv. https://doi.org/10.48550/arXiv.2407.04363
- Chen, H., Pasunuru, R., Weston, J., & Celikyilmaz, A. (2023). Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading (No. arXiv: 2310.05029). arXiv. https://doi.org/10.48550/arXiv.2310.05029
- Chen, S., Zhao, Z., Zhao, Y., & Li, X. (2024). Apollonion: Profile-centric Dialog Agent (No. arXiv: 2404.08692). arXiv. https://doi.org/10.48550/arXiv.2404.08692
- Gao, H., & Zhang, Y. (2024). Memory Sharing for Large Language Model based Agents (No. arXiv: 2404.09982). arXiv. https://doi.org/10.48550/arXiv.2404.09982
- Guo, J., Li, N., Qi, J., Yang, H., Li, R., Feng, Y., Zhang, S., & Xu, M. (2024). Empowering Working Memory for Large Language Model Agents (No. arXiv: 2312.17259). arXiv. https://doi.org/10.48550/arXiv.2312.17259
- Gutiérrez, B. J., Shu, Y., Gu, Y., Yasunaga, M., & Su, Y. (2025). HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models (No. arXiv: 2405.14831). arXiv. https://doi.org/10.48550/arXiv.2405.14831
- Hou, Y., Tamoto, H., & Miyashita, H. (2024). 《My agent understands me better》: Integrating Dynamic Human-like Memory Recall and Consolidation in LLM-Based Agents. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 1–7. https://doi.org/10.1145/3613905.3650839
- Hu, M., Chen, T., Chen, Q., Mu, Y., Shao, W., & Luo, P. (2024). HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model (No. arXiv: 2408.09559). arXiv. https://doi.org/10.48550/arXiv.2408.09559
- Hu, P., & Ying, X. (2025). Unified Mind Model: Reimagining Autonomous Agents in the LLM Era (No. arXiv: 2503.03459). arXiv. https://doi.org/10.48550/arXiv.2503.03459
- Jiang, J., Zhou, K., Zhao, W. X., Song, Y., Zhu, C., Zhu, H., & Wen, J.-R. (2024). KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph (No. arXiv: 2402.11163). arXiv. https://doi.org/10.48550/arXiv.2402.11163
- Jiang, X., Li, F., Zhao, H., Wang, J., Shao, J., Xu, S., Zhang, S., Chen, W., Tang, X., Chen, Y., Wu, M., Ma, W., Wang, M., & Chen, T. (2024). Long Term Memory: The Foundation of AI Self-Evolution (No. arXiv: 2410.15665). arXiv. https://doi.org/10.48550/arXiv.2410.15665
- Kim, T., François-Lavet, V., & Cochez, M. (2024). Leveraging Knowledge Graph-Based Human-Like Memory Systems to Solve Partially Observable Markov Decision Processes (No. arXiv: 2408.05861). arXiv. https://doi.org/10.48550/arXiv.2408.05861
- Li, H., Yang, C., Zhang, A., Deng, Y., Wang, X., & Chua, T.-S. (2025). Hello Again! LLM-powered Personalized Agent for Long-term Dialogue (No. arXiv: 2406.05925). arXiv. https://doi.org/10.48550/arXiv.2406.05925
- Liang, X., Tao, M., Xia, Y., Shi, T., Wang, J., & Yang, J. (2024). Self-evolving Agents with reflective and memory-augmented abilities (No. arXiv: 2409.00872). arXiv. https://doi.org/10.48550/arXiv.2409.00872
- Liu, J., Gu, S., Li, D., Zhang, G., Han, M., Gu, H., Zhang, P., Lu, T., Shang, L., & Gu, N. (2025). Enhancing Cross-Domain Recommendations with Memory-Optimized LLM-Based User Agents (No. arXiv: 2502.13843). arXiv. https://doi.org/10.48550/arXiv.2502.13843
- Liu, L., Yang, X., Shen, Y., Hu, B., Zhang, Z., Gu, J., & Zhang, G. (2023). Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory (No. arXiv: 2311.08719). arXiv. https://doi.org/10.48550/arXiv.2311.08719
- Liu, N., Chen, L., Tian, X., Zou, W., Chen, K., & Cui, M. (2024). From LLM to Conversational Agent: A Memory Enhanced Architecture with Fine-Tuning of Large Language Models (No. arXiv: 2401.02777). arXiv. https://doi.org/10.48550/arXiv.2401.02777
- Liu, W., Zhang, R., Zhou, A., Gao, F., & Liu, J. (2025). Echo: A Large Language Model with Temporal Episodic Memory (No. arXiv: 2502.16090). arXiv. https://doi.org/10.48550/arXiv.2502.16090
- Maharana, A., Lee, D.-H., Tulyakov, S., Bansal, M., Barbieri, F., & Fang, Y. (2024). Evaluating Very Long-Term Conversational Memory of LLM Agents (No. arXiv: 2402.17753). arXiv. https://doi.org/10.48550/arXiv.2402.17753
- McKee, K. L. (2025). Meta-Learning to Explore via Memory Density Feedback (No. arXiv: 2503.02831). arXiv. https://doi.org/10.48550/arXiv.2503.02831
- Michelman, J., Baratalipour, N., & Abueg, M. (2025). Enhancing Reasoning with Collaboration and Memory (No. arXiv: 2503.05944). arXiv. https://doi.org/10.48550/arXiv.2503.05944
- Mumuni, A., & Mumuni, F. (2025). Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches (No. arXiv: 2501.03151). arXiv. https://doi.org/10.48550/arXiv.2501.03151
- Ong, K. T., Kim, N., Gwak, M., Chae, H., Kwon, T., Jo, Y., Hwang, S., Lee, D., & Yeo, J. (2025). Towards Lifelong Dialogue Agents via Timeline-based Memory Management (No. arXiv: 2406.10996). arXiv. https://doi.org/10.48550/arXiv.2406.10996
- Pan, H., Zhai, Z., Yuan, H., Lv, Y., Fu, R., Liu, M., Wang, Z., & Qin, B. (2024). KwaiAgents: Generalized Information-seeking Agent System with Large Language Models (No. arXiv: 2312.04889). arXiv. https://doi.org/10.48550/arXiv.2312.04889
- Pan, Z., Wu, Q., Jiang, H., Luo, X., Cheng, H., Li, D., Yang, Y., Lin, C.-Y., Zhao, H. V., Qiu, L., & Gao, J. (2025). On Memory Construction and Retrieval for Personalized Conversational Agents (No. arXiv: 2502.05589). arXiv. https://doi.org/10.48550/arXiv.2502.05589
- Peng, Q., Liu, H., Huang, H., Yang, Q., & Shao, M. (2025). A Survey on LLM-powered Agents for Recommender Systems (No. arXiv: 2502.10050). arXiv. https://doi.org/10.48550/arXiv.2502.10050
- Pink, M., Wu, Q., Vo, V. A., Turek, J., Mu, J., Huth, A., & Toneva, M. (2025). Position: Episodic Memory is the Missing Piece for Long-Term LLM Agents (No. arXiv: 2502.06975). arXiv. https://doi.org/10.48550/arXiv.2502.06975
- Rappazzo, B. H., Wang, Y., Ferber, A., & Gomes, C. (2024). GEM-RAG: Graphical Eigen Memories For Retrieval Augmented Generation (No. arXiv: 2409.15566). arXiv. https://doi.org/10.48550/arXiv.2409.15566
- Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J., & Chalef, D. (2025). Zep: A Temporal Knowledge Graph Architecture for Agent Memory (No. arXiv: 2501.13956). arXiv. https://doi.org/10.48550/arXiv.2501.13956
- Schmied, T., Paischer, F., Patil, V., Hofmarcher, M., Pascanu, R., & Hochreiter, S. (2024). Retrieval-Augmented Decision Transformer: External Memory for In-context RL (No. arXiv: 2410.07071). arXiv. https://doi.org/10.48550/arXiv.2410.07071
- Shang, J., Zheng, Z., Wei, J., Ying, X., Tao, F., & Team, M. (2024). AI-native Memory: A Pathway from LLMs Towards AGI (No. arXiv: 2406.18312). arXiv. https://doi.org/10.48550/arXiv.2406.18312
- Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv: 2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136
- Sumers, T. R., Yao, S., Narasimhan, K., & Griffiths, T. L. (2024). Cognitive Architectures for Language Agents (No. arXiv: 2309.02427). arXiv. https://doi.org/10.48550/arXiv.2309.02427
- Sun, Y., Fu, H., Littman, M., & Konidaris, G. (2025). Knowledge Retention for Continual Model-Based Reinforcement Learning (No. arXiv: 2503.04256). arXiv. https://doi.org/10.48550/arXiv.2503.04256
- Tan, J. C. M., Saroj, P., Runwal, B., Maheshwari, H., Sheng, B. L. Y., Cottrill, R., Chona, A., Kumar, A., & Motani, M. (2024). TaskGen: A Task-Based, Memory-Infused Agentic Framework using StrictJSON (No. arXiv: 2407.15734). arXiv. https://doi.org/10.48550/arXiv.2407.15734
- Tan, Z., Yan, J., Hsu, I.-H., Han, R., Wang, Z., Le, L. T., Song, Y., Chen, Y., Palangi, H., Lee, G., Iyer, A., Chen, T., Liu, H., Lee, C.-Y., & Pfister, T. (2025). In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents (No. arXiv: 2503.08026). arXiv. https://doi.org/10.48550/arXiv.2503.08026
- Wang, P., Li, Z., Zhang, N., Xu, Z., Yao, Y., Jiang, Y., Xie, P., Huang, F., & Chen, H. (2024). WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models (No. arXiv: 2405.14768). arXiv. https://doi.org/10.48550/arXiv.2405.14768
- Wang, Q., Gao, Z., & Xu, R. (2023). Graph Agent: Explicit Reasoning Agent for Graphs (No. arXiv: 2310.16421). arXiv. https://doi.org/10.48550/arXiv.2310.16421
- Wang, X., Wang, S., Zhu, Y., & Liu, B. (2025). R \(^3\) Mem: Bridging Memory Retention and Retrieval via Reversible Compression (No. arXiv: 2502.15957). arXiv. https://doi.org/10.48550/arXiv.2502.15957
- Wang, Z. Z., Mao, J., Fried, D., & Neubig, G. (2024). Agent Workflow Memory (No. arXiv: 2409.07429). arXiv. https://doi.org/10.48550/arXiv.2409.07429
- Wei, J., Ying, X., Gao, T., Bao, F., Tao, F., & Shang, J. (2025). AI-native Memory 2.0: Second Me (No. arXiv: 2503.08102). arXiv. https://doi.org/10.48550/arXiv.2503.08102
- Xu, W., Liang, Z., Mei, K., Gao, H., Tan, J., & Zhang, Y. (2025). A-MEM: Agentic Memory for LLM Agents (No. arXiv: 2502.12110). arXiv. https://doi.org/10.48550/arXiv.2502.12110
- Yan, X., Feng, S., Yuan, J., Xia, R., Wang, B., Zhang, B., & Bai, L. (2025). SurveyForge: On the Outline Heuristics, Memory-Driven Generation, and Multi-dimensional Evaluation for Automated Survey Writing (No. arXiv: 2503.04629). arXiv. https://doi.org/10.48550/arXiv.2503.04629
- Yang, H., Lin, Z., Wang, W., Wu, H., Li, Z., Tang, B., Wei, W., Wang, J., Tang, Z., Song, S., Xi, C., Yu, Y., Chen, K., Xiong, F., Tang, L., & E, W. (2024). \(\text{Memory}^3\) : Language Modeling with Explicit Memory. Journal of Machine Learning, 3(3), 300–346. https://doi.org/10.4208/jml.240708
- Yang, W., Li, Y., Fang, M., & Chen, L. (2025). MTPChat: A Multimodal Time-Aware Persona Dataset for Conversational Agents (No. arXiv: 2502.05887). arXiv. https://doi.org/10.48550/arXiv.2502.05887
- Yue, S., Wang, S., Chen, W., Huang, X., & Wei, Z. (2025). Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks (No. arXiv: 2407.09893). arXiv. https://doi.org/10.48550/arXiv.2407.09893
- Zeng, R., Fang, J., Liu, S., & Meng, Z. (2024). On the Structural Memory of LLM Agents (No. arXiv: 2412.15266). arXiv. https://doi.org/10.48550/arXiv.2412.15266
- Zhang, Y., Chen, Z., Guo, L., Xu, Y., Zhang, W., & Chen, H. (2024). Making Large Language Models Perform Better in Knowledge Graph Completion (No. arXiv: 2310.06671). arXiv. https://doi.org/10.48550/arXiv.2310.06671
- Zhang, Z., Bo, X., Ma, C., Li, R., Chen, X., Dai, Q., Zhu, J., Dong, Z., & Wen, J.-R. (2024). A Survey on the Memory Mechanism of Large Language Model based Agents (No. arXiv: 2404.13501). arXiv. https://doi.org/10.48550/arXiv.2404.13501
- Zheng, J., Shi, C., Cai, X., Li, Q., Zhang, D., Li, C., Yu, D., & Ma, Q. (2025). Lifelong Learning of Large Language Model based Agents: A Roadmap (No. arXiv: 2501.07278). arXiv. https://doi.org/10.48550/arXiv.2501.07278
- Zhong, W., Guo, L., Gao, Q., Ye, H., & Wang, Y. (2023). MemoryBank: Enhancing Large Language Models with Long-Term Memory (No. arXiv: 2305.10250). arXiv. https://doi.org/10.48550/arXiv.2305.10250
- Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White, A. D., & Schwaller, P. (2023). ChemCrow: Augmenting large-language models with chemistry tools (No. arXiv: 2304.05376). arXiv. https://doi.org/10.48550/arXiv.2304.05376
- Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Chan, C.-M., Yu, H., Lu, Y., Hung, Y.-H., Qian, C., Qin, Y., Cong, X., Xie, R., Liu, Z., Sun, M., & Zhou, J. (2023). AgentVerse: Facilitating Multi-Agent Collaboration and Exploring Emergent Behaviors (No. arXiv: 2308.10848). arXiv. https://doi.org/10.48550/arXiv.2308.10848
- Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., & Mordatch, I. (2023). Improving Factuality and Reasoning in Language Models through Multiagent Debate (No. arXiv: 2305.14325). arXiv. https://doi.org/10.48550/arXiv.2305.14325
- Ge, Y., Hua, W., Mei, K., Ji, J., Tan, J., Xu, S., Li, Z., & Zhang, Y. (2023). OpenAGI: When LLM Meets Domain Experts (No. arXiv: 2304.04370). arXiv. https://doi.org/10.48550/arXiv.2304.04370
- Guo, J., Yang, B., Yoo, P., Lin, B. Y., Iwasawa, Y., & Matsuo, Y. (2024). Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT-4 (No. arXiv: 2309.17277). arXiv. https://doi.org/10.48550/arXiv.2309.17277
- Holt, S., Luyten, M. R., & Schaar, M. van der. (2024). L2MAC: Large Language Model Automatic Computer for Extensive Code Generation (No. arXiv: 2310.02003). arXiv. https://doi.org/10.48550/arXiv.2310.02003
- Ifargan, T., Hafner, L., Kern, M., Alcalay, O., & Kishony, R. (2024). Autonomous LLM-driven research from data to human-verifiable research papers (No. arXiv: 2404.17605). arXiv. https://doi.org/10.48550/arXiv.2404.17605
- Qian, C., Liu, W., Liu, H., Chen, N., Dang, Y., Li, J., Yang, C., Chen, W., Su, Y., Cong, X., Xu, J., Li, D., Liu, Z., & Sun, M. (2024). ChatDev: Communicative Agents for Software Development (No. arXiv: 2307.07924). arXiv. https://doi.org/10.48550/arXiv.2307.07924
- Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2023). HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (No. arXiv: 2303.17580). arXiv. https://doi.org/10.48550/arXiv.2303.17580
- Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv: 2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136
- Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., & Anandkumar, A. (2023). Voyager: An Open-Ended Embodied Agent with Large Language Models (No. arXiv: 2305.16291). arXiv. https://doi.org/10.48550/arXiv.2305.16291
- Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W., & Lim, E.-P. (2023). Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models (No. arXiv: 2305.04091). arXiv. https://doi.org/10.48550/arXiv.2305.04091
- Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang, L., Zhang, X., Zhang, S., Liu, J., Awadallah, A. H., White, R. W., Burger, D., & Wang, C. (2023). AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation (No. arXiv: 2308.08155). arXiv. https://doi.org/10.48550/arXiv.2308.08155
- Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua, T. J., Zhao, J., Liu, Q., Liu, C., Liu, L. Z., Xu, Y., Su, H., Shin, D., Xiong, C., & Yu, T. (2023). OpenAgents: An Open Platform for Language Agents in the Wild (No. arXiv: 2310.10634). arXiv. https://doi.org/10.48550/arXiv.2310.10634
- Zhang, A., Chen, Y., Sheng, L., Wang, X., & Chua, T.-S. (2024). On Generative Agents in Recommendation (No. arXiv: 2310.10108). arXiv. https://doi.org/10.48550/arXiv.2310.10108
- Zhou, W., Jiang, Y. E., Li, L., Wu, J., Wang, T., Qiu, S., Zhang, J., Chen, J., Wu, R., Wang, S., Zhu, S., Chen, J., Zhang, W., Tang, X., Zhang, N., Chen, H., Cui, P., & Sachan, M. (2023). Agents: An Open-source Framework for Autonomous Language Agents (No. arXiv: 2309.07870). arXiv. https://doi.org/10.48550/arXiv.2309.07870
- Zhuge, M., Liu, H., Faccio, F., Ashley, D. R., Csordás, R., Gopalakrishnan, A., Hamdi, A., Hammoud, H. A. A. K., Herrmann, V., Irie, K., Kirsch, L., Li, B., Li, G., Liu, S., Mai, J., Piękos, P., Ramesh, A., Schlag, I., Shi, W., … Schmidhuber, J. (2023). Mindstorms in Natural Language-Based Societies of Mind (No. arXiv: 2305.17066). arXiv. https://doi.org/10.48550/arXiv.2305.17066
RAG¶
教程汇总 ¶
- GitHub - NirDiamant/RAG_Techniques: This repository showcases various advanced techniques for Retrieval-Augmented Generation (RAG) systems. RAG systems combine information retrieval with generative models to provide accurate and contextually rich responses.
- GitHub - bRAGAI/bRAG-langchain: Everything you need to know to build your own RAG application
- GitHub - D-Star-AI/dsRAG: High-performance retrieval engine for unstructured data
KRAG¶
- GitHub - microsoft/SmartKG: This project accepts excel files as input which contains the description of a Knowledge Graph (Vertexes and Edges) and convert it into an in-memory Graph Store. This project implements APIs to search/filter/get nodes and relations from the in-memory Knowledge Graph. This project also provides a dialog management framework and enable a chatbot based on its knowledge graph.
- GitHub - CheMiguel23/MemoryMesh: A knowledge graph server that uses the Model Context Protocol (MCP) to provide structured memory persistence for AI models. v0.2.8
- GitHub - shaneholloman/mcp-knowledge-graph: MCP server enabling persistent memory for Claude through a local knowledge graph - fork focused on local development
Agent Document¶
- Blog | Letta
- The Letta Platform — Letta
- LangGraph
- 🦜️🔗 LangChain
- Get started with LangSmith | 🦜️🛠️ LangSmith
AI 代理关键技术方案总结 ¶
内存管理方案 ¶
- 长短期记忆结构 - 长期记忆:通常通过向量数据库(如 Pinecone、Chroma、Milvus)实现,使用语义搜索检索相关信息
- 应用实例:Pinecone 在 Cisco 的企业 AI 助手中用于准确、安全地搜索数百万文档
- 应用实例:BabyAGI 使用 Pinecone 存储任务执行历史,即使关闭后也能保持记忆
- 短期记忆(工作记忆):由 LLM 维护和更新,用于当前对话或任务上下文
- 应用实例:LangChain 的 ConversationBufferMemory 保存完整对话历史
- 应用实例:AutoGen 中的代理可以在对话期间维护短期上下文
- 记忆持久化方案 - 完整状态序列化:将代理的完整状态(包括记忆和工具状态)保存到文件或 Python 对象中
- 应用实例:Letta(前身为 MemGPT)可以将代理状态序列化,无需外部数据库
- 应用实例:LangGraph 的 Memory Store 提供低级抽象,让用户完全控制代理记忆
- 会话持久记忆:确保数据在多个会话之间保存
- 应用实例:Letta 的核心记忆功能允许代理记住用户信息(如名字
) ,即使在会话结束后 - 应用实例:LangChain 的 ConversationEntityMemory 可以跟踪对话中提到的实体
- 无限记忆回忆:如 BabyAGI 的一些变体,可以回忆 " 无限 " 记忆,即使在关闭后也不会丢失记忆
- 应用实例:BabyAGI 的变体使用 Pinecone 向量数据库和记忆计数器保存索引位置
- 应用实例:MemGPT 使用多层记忆架构,允许无限制的记忆容量
- 记忆管理技术 - 自编辑记忆:允许聊天机器人自我编辑其记忆
- 应用实例:Letta 的 core_memory_replace 功能允许代理更新核心记忆(如用户名字)
- 应用实例:MemGPT 的 store_message 功能允许代理存储重要的用户细节
- 分层记忆管理:智能管理不同层级的记忆,在 LLM 有限的上下文窗口内有效提供扩展上下文
- 应用实例:MemGPT 的三层记忆架构:核心记忆、回忆记忆和归档记忆
- 应用实例:LangChain 的 ConversationSummaryBufferMemory 通过总结压缩长对话
- 记忆总结:通过总结压缩长期记忆,保留关键信息
- 应用实例:LangChain 的 ConversationSummaryMemory 创建对话摘要而非存储完整历史
- 应用实例:MemGPT 可以将对话总结为可重用的记忆
- 记忆检索策略 - 相关性查询:AI 在其记忆中查找与当前查询相关的记忆和过去的查询
- 应用实例:MemGPT 的 conversation_search 功能允许搜索整个消息历史
- 应用实例:LangChain 的 VectorStoreRetrieverMemory 使用向量相似性检索相关记忆
- 记忆索引:使用计数器保存索引位置,便于高效检索
- 应用实例:BabyAGI 变体使用记忆计数器保存索引位置
- 应用实例:Pinecone 的索引功能支持高效的向量搜索
- 记忆类型与实现框架 - 对话记忆:存储和检索对话历史
- 应用实例:LangChain 提供多种对话记忆类型:Buffer、Summary、Entity、KnowledgeGraph
- 应用实例:LangGraph 的 ReAct Memory Agent 可以保存用户偏好,跨对话线程使用
- 向量记忆:使用嵌入向量存储和检索信息
- 应用实例:Pinecone 用于 RAG(检索增强生成)应用,提供准确的知识检索
- 应用实例:Milvus Lite 用于为 LangChain 代理提供长期记忆
- 组织记忆:为团队协作设计的记忆系统
- 应用实例:某些闭源项目专注于组织记忆和团队协作
- 应用实例:LangChain 的 Memory Store 可以根据用户 ID 范围化记忆
- 知识图谱记忆 - 图结构表示:使用节点和边表示实体及其关系,提供结构化的知识表示
- 应用实例:FalkorDB 提供超低延迟图数据库解决方案,优化 AI 代理的知识存储
- 应用实例:LangChain 的 ConversationKnowledgeGraphMemory 构建对话中实体的关系图
- 多步推理能力:通过遍历关系图进行复杂推理和决策
- 应用实例:Zep 的时间知识图谱可以跟踪事实如何随时间变化
- 应用实例:图数据库支持复杂查询,使代理能够执行复杂分析并产生更好的结果
- 语义关系保存:保持实体间的复杂语义关系,而不仅仅是简单的键值对
- 应用实例:SAP 知识图谱通过连接 SAP 数据与业务上下文,释放数据全部价值
- 应用实例:Zep 的知识图谱智能融合聊天消息和业务数据
- 实体记忆 - 实体提取与总结:从对话中提取命名实体并生成摘要
- 应用实例:LangChain 的 ConversationEntityMemory 从最近的聊天历史中提取命名实体
- 应用实例:实体记忆可以跟踪对话中提到的人物、地点、组织等
- 实体存储:使用可交换的实体存储,在对话间持久化实体
- 应用实例:LangChain 支持多种实体存储:内存、Redis、SQLite 等
- 应用实例:实体记忆可以记住 "Sam 是 Daimon 公司的创始人 " 等关键事实
- 实体更新:随着对话进行,不断更新和丰富实体信息
- 应用实例:当获取新信息时,实体记忆会更新现有实体的描述
- 应用实例:Zep 标记过时的事实为无效,保持实体信息的最新状态
- 用户画像记忆 - 用户偏好跟踪:记录用户的偏好、兴趣和行为模式
- 应用实例:LangGraph 的 Memory Store 可以根据用户 ID 存储用户特定的记忆
- 应用实例:Zep 可以为每个用户构建个性化的知识图谱
- 个性化响应生成:基于用户画像定制回复
- 应用实例:高度个性化的 AI 助手可以记住所有用户偏好和之前的交互
- 应用实例:Zep 的时间推理能力使代理能够理解用户状态的变化
- 跨会话用户识别:在多个会话中识别和记住同一用户
- 应用实例:Letta 可以在用户再次登录时记住对话细节
- 应用实例:企业级记忆系统支持 SOC 2 Type II 合规和隐私控制
多代理协作方案 ¶
- 控制器架构 - 动态决策控制器:使用 LLM 动态决定下一个执行动作的代理,考虑先前的动作、环境和当前状态的目标 - 符号控制:使用标准操作流程 (SOP) 定义整体任务的子目标 / 子任务
- 代理角色分配 - 专家代理:每个代理扮演特定专业领域的专家角色 - 角色扮演代理:代理具有特定角色、背景故事、目标和记忆 - 人机交互:框架支持人类用户扮演代理角色,输入自己的动作,与环境中的其他语言代理交互
- 协作模式 - 对话式协作:代理通过对话交流信息和想法 - 任务分解协作:将复杂任务分解为子任务,由不同代理处理 - 层次协作:代表代理间协作的层次结构
- 多 LLM 系统 - 混合强度模型:对需要强推理和指令遵循的代理使用更强大的 LLM,将简单任务委托给较弱 / 本地 LLM - 自动图优化器:优化节点级 LLM 提示和改进代理编排
工具使用方案 ¶
- 工具集成技术 - 函数调用:通过 OpenAI 的 function-calling 或类似机制集成外部工具 - 自定义工具 /API:开发者可以添加自定义工具和 API - 工具消息:支持与函数调用等效的原生 ToolMessage
- 工具类型 - 搜索工具:结合搜索、抓取、分块和提取功能 - 迷你代理工具:将小型专用代理作为工具使用 - 命令行工具:执行 shell 命令的能力 - 专业领域工具:如 ChemCrow 集成的 13 种专家设计工具,增强 LLM 在化学领域的性能
- 工具使用模式 - ReAct 模式:思考、行动、行动输入、观察的循环模式 - 工具代理:为子任务提供最佳行动系列的专用代理 - 工具设计与调试:能够设计、编码和调试自己的工具
- 规划与执行 - Plan-and-Solve 方法:通过大型语言模型改进零样本链式思考推理 - 任务规划:使用 ChatGPT 分析用户请求,理解意图并分解为可解决的任务 - 工作流步骤批准:在相关工作流步骤请求批准,确保执行预期操作