Skip to content

Dive into Deep Learning

1547 个字 387 行代码 预计阅读时间 13 分钟 共被读过

1 引言

2 预备知识

2.1 数据操作

  • tensor
  • ndarray (MXNet)
  • Tensor (TensorFlow)
Python
x = torch.arrange(12)
x.shape
x.numel()
x.reshape(3, 4)
torch.zeros((2, 3, 4))
torch.ones((2, 3, 4))
torch.randn(3, 4)
  • elementwise:
    • +
    • -
    • -
    • /
    • exp ()
    • ==
  • concatenate
Python
torch.cat((X, Y), dim = 0) # 竖着加
torch.cat((X, Y), dim = 1) # 横着加
x.sum()
  • broadcasting mechanism
    • 复制拓展到形状一致后相加
  • 索引 + 切片
  • 切片保持地址不变:节省内存
  • ndarry <-> Tensor
  • item ()

2.2 数据预处理

  • pandas
  • read_csv ()
  • NaN
    • fillna (inputs.mean ())
    • np.array (inputs. to_numpy (dtype = float))

2.3 线性代数

  • scalar
  • variable
  • space
  • element / component
  • dimension
    • len ()
    • shape
  • square matrix
  • transpose
    • A.T
  • symmetric matrix
    • A == A.T
  • channel
  • Hadamard product
\[ \begin{split}\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \dots & a_{1n} b_{1n} \\ a_{21} b_{21} & a_{22} b_{22} & \dots & a_{2n} b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{m1} & a_{m2} b_{m2} & \dots & a_{mn} b_{mn} \end{bmatrix}.\end{split} \]
  • A.sum (axis = 0) # 竖着求和
  • A.sum (axis = [0, 1]) = A.sum ()
  • A.mean () = A.sum () / A.size ()
  • A.cumsum (axis = 0)
  • dot product
    • torch.dot (x, y) = torch.sum (x * y)
    • weighted average
  • matrix-vector product
    • torch.mv (A, x)
  • matrix-matric multiplication
    • torch.mm (A, B)
  • norm
    1. \(f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}).\)
    2. \((\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y}).\)
    3. \(f(\mathbf{x}) \geq 0.\)

2.4 微积分

2.4.1 导数和微分

2.4.2 偏导数

2.4.3 梯度

\[ \nabla_{\mathbf{x}} f(\mathbf{x}) = \bigg[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_n}\bigg]^\top, \]
\[ \nabla_{\mathbf{x}} \mathbf{A} \mathbf{x} = \mathbf{A}^\top \]
\[ \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} = \mathbf{A} \]
\[ \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x} \]
\[ \nabla_{\mathbf{x}} \|\mathbf{x} \|^2 = \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{x} = 2\mathbf{x} \]
\[ \nabla_{\mathbf{X}} \|\mathbf{X} \|_F^2 = 2\mathbf{X} \]

2.4.4 链式法则

2.4.5 小结

2.5 自动微分(automatic differentiation)

  • computational graph
  • backpropagate
Python
x.requires_grad_(True)  # 等价于x=torch.arange(4.0,requires_grad=True)
x.grad  # 默认值是None
y = 2 * torch.dot(x, x)
y.backward()
x.grad
x.grad == 4 * x

2.5.1 非标量变量的反向传播

Python
# 对非标量调用backward需要传入一个gradient参数,该参数指定微分函数关于self的梯度。
# 本例只想求偏导数的和,所以传递一个1的梯度是合适的
x.grad.zero_()
y = x * x
# 等价于y.backward(torch.ones(len(x)))
y.sum().backward()
x.grad

2.5.2 分离计算

Python
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x

z.sum().backward()
x.grad == u

2.6 概率

2.6.1 基本概率论

  • sampling
  • distribution
  • multinomial distribution
Python
fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(10, fair_probs).sample() # 多个样本

2.6.2 处理多个随机变量

  • joint probability
  • conditional probability
  • Bayes’ theorem
\[ P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}. \]
  • 其中 P (A, B) 是一个联合分布 (joint distribution), P (A∣B) 是一个条件分布 (conditional distribution)
  • marginalization
    • marginal probability
    • marginal distribution
  • conditionally independent

$$ P(A, B \mid C) = P(A \mid C)P(B \mid C) $$

\[ A \perp B \mid C \]
  • expectation
\[ E[X] = \sum_{x} x P(X = x). \]
\[ E_{x \sim P}[f(x)] = \sum_x f(x) P(x). \]
  • standard deviation
\[ \mathrm{Var}[X] = E\left[(X - E[X])^2\right] = E[X^2] - E[X]^2. \]
\[ \mathrm{Var}[f(x)] = E\left[\left(f(x) - E[f(x)]\right)^2\right]. \]

3 线性神经网络

3.1 线性回归

3.1.1 线性回归的基本元素

  • regression
  • prediction / inference
  • training set
  • sample / data point / data instance
  • label / target
  • feature / covariate
\[ \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b. \]
  • weight
  • bias / offset / intercept
  • affine transformation
    • linear transformation
    • translation
  • model parameters
  • loss function
\[ l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. \]
\[ L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. \]
\[ \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). \]
\[ \mathbf{w}^{*} = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y}. \]
  • analytical solution
  • gradient descent
    • minibatch stochastic gradient descent
\[ (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). \]
  1. 初始化模型参数的值,如随机初始化
  2. 从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤 - hyperparameter
    • \(|\mathcal{B}|\): batch size
    • \(\eta\): learning rate
    • hyperparameter tuning
    • validationg dataset
    • generalization

3.1.2 矢量化加速

  • 矢量化代码

3.1.3 正态分布与平方损失

  • normal distribution / Gaussian distribution
\[ p(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (x - \mu)^2\right). \]
\[ y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, \]
  • 其中 \(\epsilon \sim \mathcal{N}(0, \sigma^2)\). 因此 y likelihood:
\[ P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). \]
\[ P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). \]
\[ -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. \]

3.1.4 从线性回归到神经网络

  • feature dimensionality
  • fully-connected layer / dense layer

3.2 线性回归的从零开始实现

Python
%matplotlib inline
import random
import torch
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

3.3 线性回归的简洁实现

Python
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000) # 生成数据集

def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size) # 读取数据集

# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1)) # 定义模型 (输入,输出)特征形状
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0) # 初始化模型参数
loss = nn.MSELoss() # 定义损失函数
trainer = torch.optim.SGD(net.parameters(), lr=0.03) # 定义优化算法

# 训练
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

3.4 softmax 回归

3.4.1 分类问题

  • one-hot encoding
\[ y \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}. \]

3.4.2 网络架构

  • affine function
  • logit
\[ \begin{split}\begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \end{aligned}\end{split} \]

3.4.3 全连接层的参数开销

  • 不知道是什么东西

3.4.4 softmax 运算

  • calibration
  • choice model
\[ \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} \]
\[ \operatorname*{argmax}_j \hat y_j = \operatorname*{argmax}_j o_j. \]
  • linear model

3.4.5 小批样本的矢量化

\[ \begin{split}\begin{aligned} \mathbf{O} &= \mathbf{X} \mathbf{W} + \mathbf{b}, \\ \hat{\mathbf{Y}} & = \mathrm{softmax}(\mathbf{O}). \end{aligned}\end{split} \]

3.4.6 损失函数

\[ P(\mathbf{Y} \mid \mathbf{X}) = \prod_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}). \]
\[ -\log P(\mathbf{Y} \mid \mathbf{X}) = \sum_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}), \]
\[ l(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{j=1}^q y_j \log \hat{y}_j. \]
  • cross-entropy loss
\[ \begin{split}\begin{aligned} l(\mathbf{y}, \hat{\mathbf{y}}) &= - \sum_{j=1}^q y_j \log \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} \\ &= \sum_{j=1}^q y_j \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\\ &= \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j. \end{aligned}\end{split} \]
\[ \partial_{o_j} l(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} - y_j = \mathrm{softmax}(\mathbf{o})_j - y_j. \]

3.4.7 信息论基础

  • information theory
  • entropy
\[ H[P] = \sum_j - P(j) \log P(j). \]

3.4.8 模型预测和评估

  • accuracy

3.5 图像分类数据集

Python
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)

def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())

def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break

3.6 softmax 回归的从零开始实现

Python
import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True) # 初始化模型参数

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True) 

def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1) # 定义softmax操作

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) # 定义模型

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y] 
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y) # 定义损失函数

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

evaluate_accuracy(net, test_iter) # 分类精度

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater) # 训练

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter) # 预测

3.7 softmax 回归的简洁实现

Python
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights); # 初始化模型参数
\[ \begin{split}\begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}. \end{aligned}\end{split} \]
\[ \begin{split}\begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)}. \end{aligned}\end{split} \]
Python
loss = nn.CrossEntropyLoss(reduction='none') # LogSumExp技巧

trainer = torch.optim.SGD(net.parameters(), lr=0.1) # 优化算法

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) # 训练

多层感知机

过拟合和欠拟合

dropout

深度学习计算

卷积神经网络

LeNet

现代卷积神经网络

AlexNet

VGG

NiN

GoogLeNet

ResNet

DenseNet

循环神经网络

现代循环神经网络

GRU

LSTM

seq2seq

注意力机制

Nadaraya-Watson

Bahdanau

Multi-headed attention

Transformer

优化算法

AdaGrad

RMSProp

Adadelta

Adam

计算性能

计算机视觉

SSD

R-CNN

自然语言处理 : 预训练

word2vec

GloVe

BERT

自然语言处理 : 应用